Исследование температурных эффектов в модели термического пика в высоко-ориентированном пиролитическом графите при облучении тяжелыми ионами ⁸⁶Kr и ²⁰⁹Bi высоких энергий

И.В. Амирханов, Д.З. Музафаров, И.В. Пузынин, Т.П. Пузынина, Н.Р. Саркар, И. Сархадов, З.А. Шарипов

Лаборатория информационных технологий, ОИЯИ

А.Ю. Дидык

Лаборатория ядерных реакций, ОИЯИ

Abstract

The studies of temperature effects at anisotropic material - highly oriented pyrolytic graphite (HOPG) under irradiation by ${}^{86}Kr$ (253 MeV) and ${}^{209}Bi$ (710 MeV) heavy ions in frames of three dimensional thermal spike model were carried out. The temperature effects versus the changes of electron-phonon interaction coefficients g are considered at this model. It has been shown that the surface temperature of HOPG target under irradiation by ^{209}Bi ions can be higher than the melting temperature or evaporation temperature of HOPG if the value of electron-phonon interaction coefficients g satisfy inequality $q > 1.5 \times q_k$, where $q_k =$ $3,12 \times 10^{12} Wt/(sm^3 K)$. The surface temperature of HOPG under irradiation by 86Kr ions is less than the melting temperature if the value of electron-phonon interaction coefficients g satisfies inequality $q \leq 4, 5 \times q_k$. It is possible to conclude using the performed calculations and experimental data from surface structure studies of single crystal HOPG after irradiation by ${}^{209}Bi(710 \text{ MeV})$ and ${}^{86}Kr(253 \text{ MeV})$, that the developed thermal spike model allows one to explain creation of the crater like structures after ^{209}Bi ion irradiation and absence of such structures in the case of ${}^{86}Kr$ ion irradiation. Such experimental data can take place if electron-phonon interaction coefficients g satisfy inequality $1, 5 \times g_k \leq g \leq 4, 5 \times g_k$. Estimations of maximum sizes of volume at HOPG under irradiation by bismuth ions where temperature can be higher the melting temperature are made.

1. ВВЕДЕНИЕ

В течение последних десятилетий большое внимание привлекают научно-исследовательские работы по изучению вопросов создания малоразмерных структур, обладающих уникальными свойствами, например, "квантовые точки" - гетероструктуры [1,2] с пространственным ограничением заряда по всем трем измерениям и другие наноструктуры. Такие исследования пользуются популярностью практически во всех центрах по физике твердого тела. Значительное развитие получили также работы, связанные с получением наноструктур в материалах при воздействии на них ускоренных тяжелых ионов различных энергий (см., например [3, 4]). Отметим, что до настоящего времени далеко не ясны механизмы взаимодействия тяжелых ускоренных ионов с твердыми телами [5,6], несмотря на достаточно продолжительное время, в течение которого такие работы проводятся (см., например [7,8] и цитированную там литературу). Существующие модели для объяснения наблюдаемых эффектов при воздействии ускоренных заряженных частиц на материалы, такие, как термический пик [9–14], кулоновский взрыв [15,16], двойной электрический слой, модель двухкомпонентной плазмы с холодными ионами и горячими электронами [17] или их комбинации даже для структур одного класса иногда не могут объяснить происходящие процессы. Одним из направлений в наноразмерных исследованиях и технологиях является создание структур на основе углерода, например, фуллеренов - структур, представляющих собой сферическое образование из 60 атомов углерода - С₆₀, углеродные нанотрубки и другие. К углеродным структурам, представляющим значительный интерес, относится и высокоориентированный пиролитический графит (ВОПГ) [18].

Рис. 1: Схемы слоевой структуры ВОПГ: а – вид сбоку, б – вид сверху

Изучение этого объекта при воздействии на него тяжелых ионов может дать важную информацию о процессах взаимодействия таких частиц с сильно неоднородной структурой квазиодномерными монокристаллами ВОПГ. Схематическая структура ВОПГ представлена на рис.1. Видно, что параметры решетки вдоль плотноупакованных плоскостей и между плоскостями значительно различаются, вследствие чего теплопроводность ВОПГ отличается вдоль этих взаимно-перпендикулярных направлений до 300 раз. Интерес к таким задачам обусловлен проводящимися исследованиями в области радиационной физики конденсированных сред и направлен на изучение изменений свойств материалов при облучении и при высокодозной ионной имплантации в современных нанотехнологиях, а также важен для развития существующих моделей, описывающих взаимодействия заряженных частиц с материалами [19–27], и разработки эффективных численных схем и алгоритмов для решения уравнений математической физики, формулируемых при создании и модификации существующих моделей для решения вышеуказанных задач.

В работе [40] проведено численное исследование тепловых процессов в ВОПГ при облучении ионами висмута с энергией 710 МэВ и ионами криптона с энергией 253 МэВ в рамках модели термического пика [19, 23, 25, 28–31].

2. МОДЕЛЬ ТЕРМИЧЕСКИХ ЭФФЕКТОВ В ВОПГ ПРИ ОБЛУЧЕНИИ ИОНАМИ

Для анизотропных материалов и с учетом аксиальной симметрии система уравнений для определения решеточной и электронной температур (модель термического пика) в цилиндрической системе координат в трехмерном случае может быть записана в виде [19,23, 25,28–31]:

$$C_e(T_e)\frac{\partial T_e}{\partial t} = \frac{1}{r}\frac{\partial}{\partial r}\left(r\lambda_e^{\perp}(T_e)\frac{\partial T_e}{\partial r}\right) + \frac{\partial}{\partial z}\left(\lambda_e^{\parallel}(T_e)\frac{\partial T_e}{\partial z}\right) - g(T_e)(T_e - T_i) + A(r, z, t), \quad (1)$$

$$C(T_i)\frac{\partial T_i}{\partial t} = \frac{1}{r}\frac{\partial}{\partial r}\left(r\lambda_i^{\perp}(T_i)\frac{\partial T_i}{\partial r}\right) + \frac{\partial}{\partial z}\left(\lambda_i^{\parallel}(T_i)\frac{\partial T_i}{\partial z}\right) + g(T_e)(T_e - T_i).$$
(2)

Ось z направлена перпендикулярно облучаемой поверхности мишени, т.е. по направлению движения тяжелого иона. Производная по углу отсутствует ввиду цилиндрической симметрии удельных ионизационных потерь тяжелого иона. Здесь $T_e(r, z, t)$ и $T_i(r, z, t)$ -температуры в электронной и решеточной подсистемах, $C_e(T_e)$, $C_i(T_i)$ и $\lambda_e(T_e)$, $\lambda_i^{\parallel,\perp}(T_i)$ – соответственно удельные теплоемкости и удельные теплопроводности электронов и решет-

Рис. 2: Зависимость удельных ионизационных потерь энергии ионов висмута $^{209}{\rm Bi}$ с энергией 710 МэВ (a) и ионов криптона $^{86}{\rm Kr}$ с энергией 253 МэВ (б) от глубины в ВОПГ

ки, соответственно, в общем случае зависящие от температуры. В данной работе значения этих теплофизических параметров выбираются равными их значениям при комнатной температуре. Символы «||» и « \perp » означают, что теплопроводность зависит от направления, и соответствуют направлениям в двух взаимно-перпендикулярных направлениях, а именно: вдоль и перпендикулярно к поверхности. $g(T_e)$ - коэффициент, характеризующий взаимодействия электронной подсистемы с решеткой (в общем случае зависящий от температуры электронного газа). Функция - A(r, z, t) объемная плотность вносимой ионом мощности. Она может быть представлена в виде наиболее часто используемого выражения, введенного в работах [32, 33]:

$$A(r,z,t) = bS_{inel0} \exp\left(-\frac{(t-t_0)^2}{2\sigma_t^2}\right) \exp\left(-\frac{r}{r_0}\right) \mu(z).$$

где $t_0 \simeq (1-5) \cdot 10^{15}$ с время достижения равновесного распределения электронов, т.е. время свободного пробега δ -электронов со средней энергией ε_e . Полуширина распределения по времени принята равной $\sigma_t = t_0$ [25]. Скорость экспоненциального спада, или пространственная ширина возбужденной области - $r_0 \leq 2,5$ нм [32] или $r_0 \simeq 1$ нм [33]. $S_{inel}(z)$ зависимость удельных ионизационных потерь энергии ионов от глубины в мишени. Она рассчитана по наиболее часто используемой компьютерной программе SRIM-2003 и приведена ниже для ионов висмута (рис.2.а) и для ионов криптона (рис.2.б).

Нормирующий множитель b определяется из условия нормировки:

$$\int_{0}^{\infty} dt \int_{0}^{r_m} 2\pi r A(r,z,t) dr = S_{inel}(z);$$

начальные условия запишем в следующем виде:

$$T_{e,i}(r,z,0) = T_0 = 300 \ K,\tag{3}$$

а граничные условия могут быть представлены как:

$$\frac{\partial T_{e,i}(r,z,t)}{\partial r}\Big|_{r=0} = 0, \quad \frac{\partial T_{e,i}(r,z,t)}{\partial z}\Big|_{z=0} = 0,$$

$$T_{e,i}(R_{\max},z,t) = T_{e,i}(r,Z_{\max},t) = T_0.$$
(4)

В (4) R_{max} – радиус удаления от траектории иона, а Z_{max} глубина, превышающая длину проективного пробега иона, при которых решетку можно считать невозмущенной, а ее температуру при $r > R_{\text{max}}$ и $z > Z_{\text{max}}$ равной T_0 . Тем самым начальные и граничные условия означают, что в начальный момент времени электронная и ионная подсистемы имеют

Теплоемкость электронного газа	$C_e(T_0) = 3,73 \times 10^{-2} \ \mathrm{Дж}/(\mathrm{см}^3 \ \mathrm{K})$
Теплопроводность электронного газа	$\lambda_e^\perp(T_0)=5,6\;\mathrm{Bt/(cm\;K)}$
	$\lambda_e^\parallel(T_0)=5,6 imes 10^{-3}~{ m Bt}/({ m cm~K})$
Теплоемкость кристаллической решетки	$C_i(T_0) = 3,73 imes 10^{-2} \ { m Дж}/({ m cm}^3 \ { m K})$
Теплопроводность кристаллической решетки	$\lambda_i^\perp(T_0)=20\;\mathrm{Bt}/(\mathrm{cm\;K})$
	$\lambda_i^{\parallel}(T_0)=5,7 imes 10^{-2}~{ m Bt}/({ m cm~K})$
Энергетические потери при входе в ВОПГ	$S^{Bi}_{inel}(T_0) = 4,4 imes 10^{-8} \; { m Дж/cm}$
для ионов висмута с энергией 710 МэВ	
Энергетические потери при входе в ВОПГ	$S^{Bi}_{inel}(T_0) = 1,84 imes 10^{-8}$ Дж/см
для ионов криптона с энергией 253 МэВ	

Таблица 1: Параметры ВОПГ и энергетические потери ионов на входе в мишень

температуру, равную комнатной, а граница z = 0 теплоизолирована. Кроме того, температуры электронного газа и решетки на большом расстоянии от траектории иона также равны комнатной температуре.

Физические параметры системы для кристаллической решетки ВОПГ (рис.1.) при комнатной температуре [18,34–36] приведены в Таблице 1.

В работах [19,23] было предложено следующее выражение для вычисления коэффициента электрон-фононного взаимодействия *g*:

$$g = \frac{\pi^2 m_e S^2 n}{6\tau_0 T_D},$$

где T_D – температура Дебая, τ_0 – время свободного пробега электронов при $T = T_D$, S – скорость звука, n – число свободных электронов в единице объема, m_e – масса электрона. Или в следующем виде:

$$g = \frac{\pi^4 (k_B n S)^2}{18\lambda_e(T_e)}$$

где $\lambda_e(T_e)$ – теплопроводность электронного газа, k_B – постоянная Больцмана. Из последней формулы видно, что коэффициент взаимодействия g зависит от теплопроводности электронного газа, т.е также зависит от направления. При подстановке значений $\lambda_e^{\perp}(T_e)$ и $\lambda_e^{\parallel}(T_e)$ в последнюю формулу получим следующие значения:

 $g(\lambda_e^{\perp})=3,12 imes 10^{12}~{
m Bt}/({
m cm}^3~{
m K})$ и $g(\lambda_e^{\parallel})=3,12 imes 10^{15}~{
m Bt}/({
m cm}^3~{
m K})$

Так как этот параметрgзависит от направления, задачу будем решать при различных значениях параметра g в отрезке $g(\lambda_e^{\perp}) \leq g \leq g(\lambda_e^{\parallel}).$

3. МЕТОД ЧИСЛЕННОГО РЕШЕНИЯ

Для численного решения системы (1) - (4) будем использовать явную двухслойную конечно-разностную схему порядка аппроксимации $O(h_r^2 + h_z^2 + h_t)$ [37–39]. Для проверки сходимости разностных схем проводился численный анализ решений при фиксированных шагах h_r, h_t и на сгущающейся сетке по z, т.е. $h_z, h_z/2, h_z/4$. Ниже представлены результаты анализа в точке r = 0, z = 0:

$$\begin{split} & \max_{\substack{0 \le t \le 0,3}} |T^e_{h_z}(0,0,t) - T^e_{h_z/2}(0,0,t)| = 8,3 \times 10^{-4}, \text{ при } t = 0,075 \\ & \max_{\substack{0 \le t \le 0,3}} |T^e_{h_z/2}(0,0,t) - T^e_{h_z/4}(0,0,t)| = 3,17 \times 10^{-4}, \text{ при } t = 0,074 \\ & \max_{\substack{0 \le t \le 0,3}} |T^i_{h_z}(0,0,t) - T^i_{h_z/2}(0,0,t)| = 6,32 \times 10^{-5}, \text{ при } t = 0,029 \end{split}$$

Рис. 3: Временные зависимости температуры кристаллической решетки на поверхности пирографита при облучении ионами висмута и криптона при разных значениях коэффициента взаимодействия (для висмута: $1 - g_k = 3, 12 \times 10^{12} \text{Br}/(\text{см}^3 \text{ K}), 2 - g = 1, 25 \times g_k, 3 - g = 1, 5 \times g_k, 4 - g = 2 \times g_k;$ для криптона: $1 - g_k = 3, 12 \times 10^{12}, 2 - g = 2 \times g_k, 3 - g = 4, 5 \times g_k, 4 - g = 7 \times g_k;$ штрихованной линией обозначена температура плавления ВОПГ). На рис.3 и ниже "С" обозначает ВОПГ (carbon)

$$\max_{0 \le t \le 0,3} |T^i_{h_z/2}(0,0,t) - T^i_{h_z/4}(0,0,t)| = 2, 1 \times 10^{-5}, \text{ при } t = 0,029$$

Как видно, найденные разности профилей температур на сгущающейся сетке уменьшаются, что свидетельствует об устойчивости схемы вычислений. Дальнейшие вычисления проводились при значениях шагов: $h_r = 5 \times 10^{-3}$, $h_z = 3 \times 10^{-3}$, $h_t = 3 \times 10^{-6}$.

4. ОБСУЖДЕНИЕ ПОЛУЧЕННЫХ РЕЗУЛЬТАТОВ

Решая системы уравнений (1) - (4) были проанализированы временные и координатные зависимости температур электронного газа $T_e(r, z, t)$ и решетки $T_i(r, z, t)$ ВОПГ при облучении ионами висмута и ионами криптона.

На рис.3. представлены зависимости от времени температур решетки на поверхности ВОПГ при облучении ионами висмута и ионами криптона при разных значениях коэффициента электрон-фононного взаимодействия g. Из этих рисунков видно, что, начиная со значения параметра $g \approx 1,5 \times g_k$ ($g_k = 3,12 \times 10^{12}$ Вт/(см³ K)), температура на поверхности ВОПГ при облучении ионами висмута может превышать температуру плавления. Этот же процесс при облучении ВОПГ ионами криптона начинается с существенно большего значения константы $g \approx 4,5 \times g_k$.

Основные экспериментальные данные при облучении ВОПГ ионами висмута и криптона следующие [31,34,35]:

А) При облучении ионами висмута вблизи поверхности ВОПГ (ионизационные потери энергии $S_{inel}^{Bi}(z \propto 0) = 27,6$ кэВ/нм) методами сканирующей туннельной микроскопии были обнаружены структурные изменения, представляющие собой кратеры с глубиной более $H_{cr} > 1$ нм и диаметром на поверхности $D_{cr} \approx 5 - 7$ нм, поверхностная плотность которых примерно на порядок меньше плотности облучения ионами висмута [31, 34, 35]. Такие структуры, по-видимому, обусловлены термофлуктуационными эффектами при потерях энергии ионов висмута на ионизацию на входе в мишень ВОПГ. Это свидетельствует о том, что эти потери энергии сравнимы с пороговыми значениями ионизационных потерь энергии ($S_{inel}^{Bi}(z = 0) \propto S_{inel}^{Threshold}$) для возникновения перегретой области вблизи поверхности с температурой выше температур плавления ($T_i^{Bi}(z \propto 0) \ge T_{melt,C}$ при значении константы $g \ge 1, 5 \times g_k$ (см. рис.3а - кривая 3)) или даже испарения ($T_i^{Bi}(z \propto 0) \ge T_{subl,C}$) ВОПГ. То есть обнаруженые структуры (кратеры) могут быть объяснены в рамках модели термического пика, за

Рис. 4: Зависимость максимального радиуса области, где температура превышает температуру плавления ВОПГ, от значений параметра *g* при облучении ионами висмута и криптона

счет резкого увеличения коэффициентов испарения атомов графита с поверхности в области трека иона висмута с высокими температурами вблизи поверхности.

Б) При облучении ионами криптона подобных структурных изменений на поверхности ВОПГ обнаружено не было. Отметим, что ионизационные потери энергии ионов криптона вблизи поверхности более, чем в два раза меньше, чем для ионов висмута $(S_{inel}^{Kr}(z \propto 0) = 12 \text{ кэВ/нм})$. Поэтому при облучении ионами криптона, по-видимому, $(S_{inel}^{Kr}(z=0) < S_{inel}^{Threshold})$ и соответственно $T_i^{Kr}(z \propto 0) < T_{melt,C}$.

Исходя из результатов, представленных на рис.3 для ВОПГ, облученного ионами криптона ($T_i^{Kr}(z \propto 0) < T_{melt,C}$, (см. рис.36 - кривая 3)) и висмута ($T_i^{Bi}(z \propto 0) \geq T_{melt,C}$) константа электрон-фононного взаимодействия должна удовлетворять двойному неравенству: 1,5 × $g_k \leq g \leq 4,5 \times g_k$.

На рис.4. представлена зависимость максимального радиуса области, где температура решетки может превышать температуру плавления ВОПГ, от значений константы электронфононного взаимодействия g при облучении ВОПГ ионами висмута и криптона. Из этих рисунков видно, что при увеличении g размер максимальной области сначала быстро растет, но постепенно стабилизируется и выходит на насыщение.

Это свидетельствует о том, что, начиная с некоторого значения параметра g, максимальный диаметр "расплавленной" области или, что более точно, области, нагретой до температуры выше температуры плавления, не будет расти, т.е представленная модель не противоречива и адекватно описывает явления при прохождении высоко-ионизирующих ионов через квазиодномерную структуру ВОПГ. В дальнейших представленных рисунках значение параметра g взято в виде $g = 2 \times g_k$.

На рис.5. и рис.6. представлены зависимости от времени температуры электронного газа и решетки на поверхности ВОПГ при облучении ионами висмута и ионами криптона для разных расстояниях от оси ОZ. Из этих рисунков видно, что при облучении висмутом, начиная со времени $t = 0,062 \times 10^{-13}c$, температура превышает температуру плавления пирографита, а при облучении криптоном температура мишени не доходит до температуры плавления пирографита.

На рис.7. представлена временная динамика изменений изотермической поверхности - поверхности, где температура равна температуре плавлении ВОПГ при облучении ионами висмута.

5. ЗАКЛЮЧЕНИЕ

В работе на основе линейной двухтемпературной модели термического пика получены

Рис. 5: Временная зависимость температур электронного газа и кристаллической решетки на поверхности ВОПГ при облучении ионами висмута от расстояний до оси трека иона при значениях: 1 - r = 0Å; 2 - r = 20Å; 3 - r = 40Å. Штрихованной линией обозначена температура плавления ВОПГ

Рис. 6: Временные зависимости температур электронного газа и кристаллической решетки на поверхности ВОПГ, при облучении ионами криптона от расстояний до оси трека при значениях: 1 - r = 0Å; 2 - r = 20Å; 3 - r = 40Å

результаты численного анализа температур электронного газа и кристаллической решетки при облучении монокристаллического высоко-ориентированного пиролитического графита ионами висмута с энергией 710 МэВ и ионами криптона с энергией 253 МэВ. Выполнен анализ точности схемы вычислений и показано, что схема устойчива. Проведены исследования температурных эффектов в модели в зависимости от коэффициента электрон-фононного взаимодействия *g*:

1. Показано, что в случае облучения ВОПГ ионами висмута с энергией 710 МэВ температура на поверхности мишени может превышать температуру плавления и даже температуру испарения-возгонки при значениях константы электрон-фононного взаимодействия $g \ge g_3 = 1,5 \times g_k$, где $g_k = 3,12 \times 10^{12}$ Вт/(см³K) (см.рис.3а).

2. При облучения ВОПГ и
онами криптона с энергией 253 МэВ температура на поверхности мишени не превышает температуру плавления при значениях коэффициента электронфононного взаимодействия
 $g \leq g_3 = 4, 5 \times g_k$ (см. рис.36).

3. Исходя из экспериментальных данных по изучению изменений структуры поверхности монокристалла ВОПГ, облученного ионами висмута с энергией 710 МэВ и криптона с

Рис. 7: Динамика движения изотермической поверхности, то есть поверхности, где температура равна температуре плавления ВОПГ, при облучении ионами висмута на временном интервале $\Delta t = 6,0 \times 10^{-15} \div 8,4 \times 10^{-15}$ с (размеры цилиндра: диаметр – D = 100Å при глубине – $Z = 2,1 \times 10^5$ Å)

энергией 253 МэВ [27, 34, 35], на основании расчетов можно сделать вывод, что для объяснения наличия структур типа кратеров (с глубиной более $H_{cr} > 1$ нм и диаметром на поверхности $D_{cr} \approx 5 - 7$ нм) на поверхности ВОПГ при облучении ионами висмута и их отсутствия в случае облучения ионами криптона, можно использовать развитую в данной работе модель термического пика, которая позволяет объяснить данные отличия при значениях коэффициента электрон-фононного взаимодействия, удовлетворяющих двойному неравенству: $1, 5 \times g_k \leq g \leq 4, 5 \times g_k$.

Максимальный размер области в ВОПГ при облучении ионами висмута, в которой температура вблизи поверхности превышает температуру плавления, равен $D_{max}^{melt} \simeq 60$ Å; $Z_{max}^{melt} \simeq 203 \times 10^3$ Å (D_{max}^{melt} – оценка максимального диаметра и Z_{max}^{melt} – оценка максимальной глубины, где может происходить плавление). Расчетные данные получены при значении коэффициента электрон-фононного взаимодействия $g \approx 2, 0 \times g_k = 6, 24 \times 10^{12}$ BT/(см³K).

Работа выполнена при финансовой поддержке РФФИ, гранты №06-01-00228 и №05-01-00645-а.

Список литературы

- Zh.I.Alferov. Proc. of Nobel Symposium 99, Arild, Sweden, June 4-8, 1996; Physica Scripta 68, 32 (1996); Ж.И.Алферов. ФТП, 32 1 (1998).
- [2] Ж.И.Алферов и др. ФТП, т.32, № 4, с.385-410.
- [3] В.М.Михушкин, С.Е.Сысоев, Ю.С.Гордеев. Изв. АН РАН, сер.физическая, 2002, т.66, № 4, с.588-592.
- [4] S.Bouneau et al. Phys.Rev.B (in press).
- [5] D.Fink, L.Chadderton. Rad.Effects Defects in Solids, v.160, Nos 3-4, 2005, pp.67-83.
- [6] Ю.В.Мартыненко. ВИНИТИ, Итоги науки и техники. Пучки заряженных частиц, Москва, 1993, с.82-113.
- [7] Ф.Ф.Комаров. УФН, т.173, № 12, с.1287-1318.
- [8] Г.А.Блейхер, В.П.Кривобоков, О.В.Пащенко. Тепломассоперенос в твердом теле под действием мощных пучков заряженных частиц. Новосибирск, "Наука Сибирская издательская фирма РАН, 1999, 176 с.
- [9] F.Seitz, J.S.Koehler. Sol. St. Phys., 1956, v.2, p.251.
- [10] И.М.Лифшиц. ДАН СССР. 1956, т.109, № 6, с.1109-1111.
- [11] И.М.Лифшиц, М.И.Каганов, Л.В.Танатаров. Атомная энергия. 1959, т.6, с.391-402.
- [12] М.И.Каганов, И.М.Лифшиц, Л.В.Танатаров. ЖЭТФ. 1956, т.31, № 2(8), с.232-237.

- [13] Я.Е.Гегузин, М.И.Каганов, И.М.Лифшиц. ФТТ. 1973, т.15, № 8, с.2425-2428.
- [14] А.А.Давыдов, А.И.Калиниченко. Вопросы атомной науки и техники. Сер.: Физика радиационных повреждений и радиационное материаловедение. Москва, 1985, вып.3(36), с.27-30.
- [15] R.L.Fleisher, P.B.Price, R.M.Walker. J. Appl. Phys. 1965, v.36, №11, p.3645-3652.
- [16] R.L.Fleisher, P.B.Price, R.M.Walker. Nuclear Track in Solids. Los Angelos: University of California. 1975.
- [17] И.А.Баранов, Ю.В.Мартыненко, С.О.Цепелевич, Ю.Н.Явлинский. УФН. 1988, т.156, №3, с.477-510.
- [18] А.С.Фиалков. Углерод, межслоевые соединения и композиты на его основе. Москва, Аспект пресс, 1997, 505 с.
- [19] Z.G.Wang, Ch.Dufour, E.Paumier et al. J. Phys.: Condensed. Matter. 1994, v.6, №34, p.6733-6750.
- [20] M.Toulemonde. Nucl. Instr. and Meth. in Phys. Res. B 1999, v.156, №1-4, p.1-11.
- [21] R.Neumann. Nucl. Instr. and Meth. in Phys. Res. B. 1999, v.151, №1-4, p.42-55.
- [22] S.Furuno, H.Otsu, K.Hojou et al. Nucl. Instr. and Meth. in Phys. Res. B. 1996, v.107, №1-4, p.223-226.
- [23] Ch.Dufour, A.Audouard, F.Beuneu et al. J. Phys.: Condens. Matter. 1993, v.5, №26, pp.4573-4584.
- [24] Audouard, E.Balanzat, J.C.Jousset et al. J. Phys: Condens. Matter. 1993, v.5, №5, pp.995-1018.
- [25] Ch.Dufour, E.Paumier, M.Toulemonde. Radiat. Eff. and Defects in Solids. 1993, v.126, p.119.
- [26] S.A.Karamian, Yu.Ts.Oganessian, V.N.Bugrov. Nucl. Instr. and Meth. in Phys. Res. B. 1989, v.43, №2, p.153-158.
- [27] А.Ю.Дидык. Известия РАН. Металлы. 1995, №3, с.128-135.
- [28] И.В.Амирханов и др. Письма в ЭЧАЯ, т.3, № 1(130), 2006, с.63-75.
- [29] И.В.Амирханов и др. Письма в ЭЧАЯ, т.3, № 5(134), 2006, с.80-91.
- [30] I.V.Amirkhanov et al. Crystallography Report, No 51, Suppl.1, 2006, pp.S32-S43.
- [31] И.В.Амирханов и др. Физика элементарных частиц и атомного ядра (ЭЧАЯ), 2006, т.37, вып.6, с.1592-1644.
- [32] M.R.P.Waligorski, R.N.Hamm, R.Katz. Nucl. Tracks and Radiat. Meas. 1986, v.11, pp.306-319.
- [33] I.S.Bitensky, P.Dimirev, B.U.R.Sundqust. Nucl. Instr. and Meth. in Phys. Res. B. 1998, v.82, pp.356-361.
- [34] А.Ю.Дидык и др. Письма в ЖТФ, 2000, т.26, №17, с.1-5.
- [35] Yu.N.Cheblukov et al. Journal of Advanced Materials, 2001, №5, p.42-45.
- [36] Физические величины. Справочник. Под. ред. И.С.Григорьева, Е.З.Мейлиховой. М.: Энергоатомиздат, 1991.
- [37] А.А.Самарский. Теория разностных схем. М.: Наука, 1983, с.258-276.
- [38] А.А.Самарский, А.В.Гулин. Устойчивость разностных схем. М.: Наука, 1973, с.308-338.
- [39] Л.И.Турчак. Основы численных методов. М.: Наука, 1987, с.277-284.
- [40] И.В.Амирханов и др., Препринт ОИЯИ, Р11-2007-106.